
SFS Toolbox - Matlab Documentation
Release <unknown>

SFS Toolbox Developers

August 22, 2016

Contents

1 Sound Field Synthesis Toolbox for Matlab 1
1.1 Installation . 1
1.2 Requirements . 1
1.3 Getting started . 2
1.4 Credits and feedback . 2

2 Secondary Sources 3
2.1 Linear array . 3
2.2 Circular array . 3
2.3 Box shaped array . 5
2.4 Box shaped array with rounded edges . 5
2.5 Spherical array . 6
2.6 Arbitrary shaped arrays . 6
2.7 Plot loudspeaker symbols . 8

3 Frequency Domain 11
3.1 Wave Field Synthesis . 11
3.2 Near-Field Compensated Higher Order Ambisonics . 14
3.3 Local Wave Field Synthesis . 14
3.4 Stereo . 16

4 Time Domain 19

5 Custom Grids 23

6 Binaural Simulations 25
6.1 Binaural simulation of arbitrary loudspeaker arrays . 25
6.2 Binaural simulation of a real setup . 26
6.3 Frequency response of your spatial audio system . 27
6.4 Using the SoundScape Renderer with the SFS Toolbox . 29

7 Helper Functions 31

8 Plotting 33

9 Version History 35

i

ii

CHAPTER 1

Sound Field Synthesis Toolbox for Matlab

The SFS Toolbox for Matlab gives you the possibility to play around with sound field synthesis methods like wave
field synthesis (WFS) or near-field compensated higher order Ambisonics (NFC-HOA). There are functions to simulate
monochromatic sound fields for different secondary source (loudspeaker) setups, time snapshots of full band impulses
emitted by the secondary source distributions, or even generate binaural room scanning (BRS) impulse response sets
in order to generate binaural simulations of the synthesized sound fields with the SoundScape Renderer.

Theory: http://sfstoolbox.org/

Documentation: http://matlab.sfstoolbox.org/

Source code and issue tracker: http://github.com/sfstoolbox/sfs/

SFS Toolbox for Python: http://python.sfstoolbox.org/

License: MIT – see the file LICENSE for details.

1.1 Installation

Download the Toolbox, go to the main path of the Toolbox and start it with SFS_start which will add all needed
paths to Matlab/Octave. If you want to remove them again, run SFS_stop.

1.2 Requirements

Matlab: You need Matlab version R2011b or newer to run the Toolbox. On older versions the Toolbox should also
work, but you need to add narginchk.m to the SFS_helper directory.

Octave: You need Octave version 3.6 or newer to run the Toolbox. In addition, you will need the audio and signal
packages from octave-forge.

audioread: If audioread() is not available in your Matlab or Octave version, you can replace it by wavread().
It is used in the two functions auralize_ir() and compensate_headphone().

Impulse responses: The Toolbox uses the SOFA file format for handling impulse response data sets like HRTFs. If
you want to use this functionality you also have to install the SOFA API for Matlab/Octave, which you can add
to your paths by executing SOFAstart.

Backward compatibility: Since version 2.0.0 the SFS Toolbox incorporates SOFA as file format for HRTFs which
replaces the old irs file format formerly used by the Toolbox. If you still need this you should download the
latest version with irs file support.

1

http://spatialaudio.net/ssr
http://sfstoolbox.org/
http://matlab.sfstoolbox.org/
http://github.com/sfstoolbox/sfs/
http://python.sfstoolbox.org/
https://github.com/sfstoolbox/sfs/releases/latest
http://gist.github.com/hagenw/5642886
http://octave.sourceforge.net/
http://sofaconventions.org/
https://github.com/sofacoustics/API_MO
http://sofaconventions.org/
https://dev.qu.tu-berlin.de/projects/measurements/wiki/IRs_file_format
https://github.com/sfstoolbox/sfs/releases/tag/1.2.0
https://github.com/sfstoolbox/sfs/releases/tag/1.2.0

SFS Toolbox - Matlab Documentation, Release <unknown>

1.3 Getting started

In order to make a simulation of the sound field of a monochromatic point source with a frequency of 800 Hz placed
at (0,2.5,0) m synthesized by WFS run

conf = SFS_config;
conf.plot.normalisation = 'center';
sound_field_mono_wfs([-2 2],[-2 2],0,[0 2.5 0],'ps',800,conf)

To make a simulation of the same point source - now producing a broadband impulse - in the time domain at a time of
200 samples after the first loudspeaker activity run

conf = SFS_config;
conf.plot.normalisation = 'max';
sound_field_imp_wfs([-2 2],[-2 2],0,[0 2.5 0],'ps',200,conf)

After that have a look at SFS_config.m for the default settings of the Toolbox. Please don’t change the settings
directly in SFS_config.m, but create an extra function or script for this, that can look like this:

conf = SFS_config;
conf.fs = 48000;

For a detailed description of all available features the SFS Toolbox, have a look at the online documentation.

1.4 Credits and feedback

If you have questions, bug reports or feature requests, please use the Issue Section to report them.

If you use the SFS Toolbox for your publications please cite our AES Convention e-Brief and the DOI for the used
Toolbox version, you will find at the official releases page:

H. Wierstorf, S. Spors - Sound Field Synthesis Toolbox. In the Proceedings of 132nd Convention of the Audio Engi-
neering Society, 2012 [pdf] [bibtex]

Copyright (c) 2010-2016 SFS Toolbox Developers

2 Chapter 1. Sound Field Synthesis Toolbox for Matlab

http://matlab.sfstoolbox.org
https://github.com/sfstoolbox/sfs/issues
https://github.com/sfstoolbox/sfs/releases
http://files.sfstoolbox.org/wierstorf_et_al_sfs-toolbox_aes132.pdf
http://files.sfstoolbox.org/wierstorf_et_al_sfs-toolbox_aes132.bib

CHAPTER 2

Secondary Sources

The Toolbox comes with a function which can generate different common shapes of loudspeaker arrays for you. At
the moment linear, circular, box shaped and spherical arrays are supported.

Before showing the different geometries, we start with some common settings. First we get a configuration struct and
set the array size/diameter to 3 m.

conf = SFS_config;
conf.secondary_sources.size = 3;

2.1 Linear array

conf = SFS_config;
conf.secondary_sources.geometry = 'line'; % or 'linear'
conf.secondary_sources.number = 21;
x0 = secondary_source_positions(conf);
figure;
figsize(conf.plot.size(1),conf.plot.size(2),conf.plot.size_unit);
draw_loudspeakers(x0,conf);
axis([-2 2 -2 1]);
%print_png('img/secondary_sources_linear.png');

2.2 Circular array

conf = SFS_config;
conf.secondary_sources.geometry = 'circle'; % or 'circular'
conf.secondary_sources.number = 56;
x0 = secondary_source_positions(conf);
figure;
figsize(540,404,'px');
draw_loudspeakers(x0,conf);
axis([-2 2 -2 2]);
%print_png('img/secondary_sources_circle.png');

3

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 2.1: Linear loudspeaker array with a length of 3m consiting of 21 loudspeakers.

Fig. 2.2: Circular loudspeaker array with a diameter of 3m consiting of 56 loudspeakers.

4 Chapter 2. Secondary Sources

SFS Toolbox - Matlab Documentation, Release <unknown>

2.3 Box shaped array

conf = SFS_config;
conf.secondary_sources.geometry = 'box';
conf.secondary_sources.number = 84;
x0 = secondary_source_positions(conf);
figure;
figsize(540,404,'px');
draw_loudspeakers(x0,conf);
axis([-2 2 -2 2]);
%print_png('img/secondary_sources_box.png');

Fig. 2.3: Box shaped loudspeaker array with a diameter of 3m consisting of 84 loudspeakers.

2.4 Box shaped array with rounded edges

conf.secondary_sources.edge_radius defines the bending radius of the corners. It can be chosen in a
range between 0.0 and the half of conf.secondary_sources.size. While the prior represents a square box
the latter yields a circle. Note that the square box behaves it little bit different than the Box Shaped Array since
loudspeakers might also be place directly in the corners of the box.

conf = SFS_config;
conf.secondary_sources.geometry = 'rounded-box';
conf.secondary_sources.number = 84;
conf.secondary_sources.corner_radius = 0.3;
x0 = secondary_source_positions(conf);
figure;
figsize(540,404,'px');
draw_loudspeakers(x0,conf);
axis([-2 2 -2 2]);
%print_png('img/secondary_sources_rounded-box.png');

2.3. Box shaped array 5

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 2.4: Box shaped loudspeaker array with rounded edges. It has again a diameter of 3m, consists of 84 loudspeakers
and has a edge bending factor of 0.3.

2.5 Spherical array

For a spherical array you need a grid to place the secondary sources on the sphere. At the moment we provide
grids with the Toolbox, that can be found in the corresponding folder of the data repository. You have to specify
your desired grid, for example conf.secondary_sources.grid = ’equally_spaced_points’. The
secondary_source_positions() functions will then automatically download the desired grid from that web
page and stores it under <$SFS_MAIN_PATH>/data. If the download is not working (which can happen especially
under Matlab and Windows) you can alternatively checkout or download the whole data repository to the data folder.

conf = SFS_config;
conf.secondary_sources.size = 3;
conf.secondary_sources.geometry = 'sphere'; % or 'spherical'
conf.secondary_sources.grid = 'equally_spaced_points';
conf.secondary_sources.number = 225;
x0 = secondary_source_positions(conf);
figure;
figsize(540,404,'px');
draw_loudspeakers(x0,conf);
axis([-2 2 -2 2]);
%print_png('img/secondary_sources_sphere.png');

2.6 Arbitrary shaped arrays

You can create arbitrarily shaped arrays by setting conf.secondary_sources.geometry to ’custom’ and
define the values of the single loudspeaker directly in the conf.secondary_sources.x0matrix. The rows of the
matrix contain the single loudspeakers and the six columns are [x y z nx ny nz w], the position and direction
and weight of the single loudspeakers. The weight w is a factor the driving function of this particular loudspeaker is
multiplied with in a function that calculates the sound field from the given driving signals and secondary sources. For
WFS (Wave Field Synthesis) w could include the tapering window, a spherical grid weight, and the 𝑟2 cos(𝜃) weights
for integration on a sphere.

6 Chapter 2. Secondary Sources

http://github.com/sfstoolbox/data/tree/master/spherical_grids
http://github.com/sfstoolbox/data

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 2.5: Spherical loudspeaker array with a diameter of 3m consiting of 225 loudspeakers arranged on a grid with
equally spaced points.

conf = SFS_config;
% create a stadium like shape by combining two half circles with two linear
% arrays
% first getting a full circle with 56 loudspeakers
conf.secondary_sources.geometry = 'circle';
conf.secondary_sources.number = 56;
conf.secondary_sources.x0 = [];
x0 = secondary_source_positions(conf);
% store the first half cricle and move it up
x01 = x0(2:28,:);
x01(:,2) = x01(:,2) + ones(size(x01,1),1)*0.5;
% store the second half circle and move it down
x03 = x0(30:56,:);
x03(:,2) = x03(:,2) - ones(size(x03,1),1)*0.5;
% create a linear array
conf.secondary_sources.geometry = 'line';
conf.secondary_sources.number = 7;
conf.secondary_sources.size = 1;
x0 = secondary_source_positions(conf);
% rotate it and move it left
R = rotation_matrix(pi/2);
x02 = [(R*x0(:,1:3)')' (R*x0(:,4:6)')'];
x02(:,1) = x02(:,1) - ones(size(x0,1),1)*1.5;
x02(:,7) = x0(:,7);
% rotate it the other way around and move it right
R = rotation_matrix(-pi/2);
x04 = [(R*x0(:,1:3)')' (R*x0(:,4:6)')'];
x04(:,1) = x04(:,1) + ones(size(x0,1),1)*1.5;
x04(:,7) = x0(:,7);
% combine everything
conf.secondary_sources.geometry = 'custom';
conf.secondary_sources.x0 = [x01; x02; x03; x04];
% if we gave the conf.x0 to the secondary_source_positions function it will
% simply return the defined x0 matrix
x0 = secondary_source_positions(conf);

2.6. Arbitrary shaped arrays 7

SFS Toolbox - Matlab Documentation, Release <unknown>

figure;
figsize(540,404,'px');
draw_loudspeakers(x0,conf);
axis([-2 2 -2.5 2.5]);
%print_png('img/secondary_sources_arbitrary.png');

Fig. 2.6: Custom arena shaped loudspeaker array consiting of 70 loudspeakers.

2.7 Plot loudspeaker symbols

For two dimensional setups you can plot the secondary sources with loudspeaker symbols, for example the following
will replot the last array.

conf.plot.realloudspeakers = true;
figure;
figsize(540,404,'px');
draw_loudspeakers(x0,conf);
axis([-2 2 -2.5 2.5]);
%print_png('img/secondary_sources_arbitrary_realloudspeakers.png');

8 Chapter 2. Secondary Sources

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 2.7: Custom arena shaped loudspeaker array consiting of 70 loudspeakers, plotted using loudspeaker symbols
instead of circles for the single loudspeakers.

2.7. Plot loudspeaker symbols 9

SFS Toolbox - Matlab Documentation, Release <unknown>

10 Chapter 2. Secondary Sources

CHAPTER 3

Frequency Domain

With the files in the folder SFS_monochromatic you can simulate a monochromatic sound field in a specified area
for different techniques like WFS and NFC-HOA (Near-Field Compensated Higher Order Ambisonics). The area
can be a 3D cube, a 2D plane, a line or only one point. This depends on the specification of X,Y,Z. For example
[-2 2],[-2 2],[-2 2] will be a 3D cube; [-2 2],0,[-2 2] the xz-plane; [-2 2],0,0 a line along the
x-axis; 3,2,1 a single point. If you present a range like [-2 2] the Toolbox will create automatically a regular grid
from this ranging from -2 to 2 with conf.resolution steps in between. Alternatively you could apply a custom
grid by providing a matrix instead of the [min max] range for all active axes.

For all 2.5D functions the configuration conf.xref is important as it defines the point for which the amplitude is
corrected in the sound field. The default entry is

conf.xref = [0 0 0];

3.1 Wave Field Synthesis

The following will simulate the field of a virtual plane wave with a frequency of 800 Hz going into the direction of (0
-1 0) synthesized with 3D WFS.

conf = SFS_config;
conf.dimension = '3D';
conf.secondary_sources.size = 3;
conf.secondary_sources.number = 225;
conf.secondary_sources.geometry = 'sphere';
% [P,x,y,z,x0,win] = sound_field_mono_wfs(X,Y,Z,xs,src,f,conf);
sound_field_mono_wfs([-2 2],[-2 2],0,[0 -1 0],'pw',800,conf);
%print_png('img/sound_field_wfs_3d_xy.png');
sound_field_mono_wfs([-2 2],0,[-2 2],[0 -1 0],'pw',800,conf);
%print_png('img/sound_field_wfs_3d_xz.png');
sound_field_mono_wfs(0,[-2 2],[-2 2],[0 -1 0],'pw',800,conf);
%print_png('img/sound_field_wfs_3d_yz.png');

You can see that the Toolbox is now projecting all the secondary source positions into the plane for plotting them. In
addition the axis are automatically chosen and labeled.

It is also possible to simulate and plot the whole 3D cube, but in this case no secondary sources will be added to the
plot.

conf = SFS_config;
conf.dimension = '3D';
conf.secondary_sources.size = 3;
conf.secondary_sources.number = 225;

11

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 3.1: Sound pressure of a mono-chromatic plane wave synthesized by 3D WFS. The plane wave has a frequency
of 800Hz and is travelling into the direction (0,-1,0). The plot shows the xy-plane.

Fig. 3.2: The same as in the figure before, but now showing the xz-plane.

12 Chapter 3. Frequency Domain

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 3.3: The same as in the figure before, but now showing the yz-plane.

conf.secondary_sources.geometry = 'sphere';
conf.resolution = 100;
sound_field_mono_wfs([-2 2],[-2 2],[-2 2],[0 -1 0],'pw',800,conf);
%print_png('img/sound_field_wfs_3d_xyz.png');

Fig. 3.4: Sound pressure of a mono-chromatic plane wave synthesized by 3D WFS. The plane wave has a frequency
of 800Hz and is travelling into the direction (0,-1,0). All three dimensions are shown.

In the next plot we use a two dimensional array, 2.5D WFS and a virtual point source located at (0 2.5 0) m. The 3D
example showed you, that the sound fields are automatically plotted if we specify now output arguments. If we specify
one, we have to explicitly say if we want also plot the results, by conf.plot.useplot = true;.

conf = SFS_config;
conf.dimension = '2.5D';
conf.plot.useplot = true;
conf.plot.normalisation = 'center';
% [P,x,y,z,x0] = sound_field_mono_wfs(X,Y,Z,xs,src,f,conf);

3.1. Wave Field Synthesis 13

SFS Toolbox - Matlab Documentation, Release <unknown>

[P,x,y,z,x0] = sound_field_mono_wfs([-2 2],[-2 2],0,[0 2.5 0],'ps',800,conf);
%print_png('img/sound_field_wfs_25d.png');

Fig. 3.5: Sound pressure of a mono-chromatic point source synthesized by 2.5D WFS. The point source has a
frequency of 800Hz and is placed at (0 2.5 0)m. Only the active loudspeakers of the array are plotted.

If you want to plot the whole loudspeaker array and not only the active secondary sources, you can do this by adding
these commands. First we store all sources in an extra variable x0_all, then we get the active ones x0 and the
corresponding indices of these active ones in x0_all. Afterwards we set all sources in x0_all to zero, which are
inactive and only the active ones to the loudspeaker weights x0(:,7).

x0_all = secondary_source_positions(conf);
[~,idx] = secondary_source_selection(x0_all,[0 2.5 0],'ps');
x0_all(:,7) = zeros(1,size(x0_all,1));
x0_all(idx,7) = x0(:,7);
plot_sound_field(P,[-2 2],[-2 2],0,x0_all,conf);
%print_png('img/sound_field_wfs_25d_with_all_sources.png');

3.2 Near-Field Compensated Higher Order Ambisonics

In the following we will simulate the field of a virtual plane wave with a frequency of 800 Hz traveling into the
direction (0 -1 0), synthesized with 2.5D NFC-HOA.

conf = SFS_config;
conf.dimension = '2.5D';
% sound_field_mono_nfchoa(X,Y,Z,xs,src,f,conf);
sound_field_mono_nfchoa([-2 2],[-2 2],0,[0 -1 0],'pw',800,conf);
%print_png('img/sound_field_nfchoa_25d.png');

3.3 Local Wave Field Synthesis

In NFC-HOA the aliasing frequency in a small region inside the listening area can be increased by limiting the used
order. A similar outcome can be achieved in WFS by applying so called local Wave Field Synthesis. In this case the
original loudspeaker array is driven by WFS to create a virtual loudspeaker array consisting of focused sources which

14 Chapter 3. Frequency Domain

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 3.6: Sound pressure of a mono-chromatic point source synthesized by 2.5D WFS. The point source has a
frequency of 800Hz and is placed at (0 2.5 0)m. All loudspeakers are plotted. Their color correspond to the loudspeaker
weights, where white stands for zero.

Fig. 3.7: Sound pressure of a monochromatic plane wave synthesized by 2.5D NFC-HOA. The plane wave has a
frequency of 800 Hz and is traveling into the direction (0,-1,0).

3.3. Local Wave Field Synthesis 15

SFS Toolbox - Matlab Documentation, Release <unknown>

can then be used to create the desired sound field in a small area. The settings are the same as for WFS, but a new
struct conf.localsfs has to be filled out, which for example provides the settings for the desired position and
form of the local region with higher aliasing frequency, have a look into SFS_config.m for all possible settings.

conf = SFS_config;
conf.resolution = 1000;
conf.dimension = '2D';
conf.secondary_sources.geometry = 'box';
conf.secondary_sources.number = 4*56;
conf.secondary_sources.size = 2;
conf.localsfs.vss.size = 0.4;
conf.localsfs.vss.center = [0 0 0];
conf.localsfs.vss.geometry = 'circular';
conf.localsfs.vss.number = 56;
% sound_field_mono_localwfs(X,Y,Z,xs,src,f,conf);
sound_field_mono_localwfs([-1 1],[-1 1],0,[1.0 -1.0 0],'pw',7000,conf);
axis([-1.1 1.1 -1.1 1.1]);
%print_png('img/sound_field_localwfs_2d.png');

Fig. 3.8: Sound pressure of a monochromatic plane wave synthesized by 2D local WFS. The plane wave has a
frequency of 7000 Hz and is traveling into the direction (1,-1,0). The local WFS is created by using focused sources
to create a virtual circular loudspeaker array in he center of the actual loudspeaker array.

3.4 Stereo

The Toolbox includes not only WFS and NFC-HOA, but also some generic sound field functions that are doing only
the integration of the driving signals of the single secondary sources to the resulting sound field. With these function
you can for example easily simulate a stereophonic setup. In this example we set the conf.plot.normalisation
= ’center’; configuration manually as the amplitude of the sound field is too low for the default ’auto’ setting
to work.

conf = SFS_config;
conf.plot.normalisation = 'center';
x0 = [-1 2 0 0 -1 0 1;1 2 0 0 -1 0 1];
% [P,x,y,z] = sound_field_mono(X,Y,Z,x0,src,D,f,conf)
sound_field_mono([-2 2],[-1 3],0,x0,'ps',[1 1],800,conf)
%print_png('img/sound_field_stereo.png');

16 Chapter 3. Frequency Domain

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 3.9: Sound pressure of a monochromatic phantom source generated by stereophony. The phantom source has a
frequency of 800 Hz and is placed at (0,2,0) by amplitude panning.

3.4. Stereo 17

SFS Toolbox - Matlab Documentation, Release <unknown>

18 Chapter 3. Frequency Domain

CHAPTER 4

Time Domain

With the files in the folder SFS_time_domain you can simulate snapshots in time of an impulse originating from
your WFS or NFC-HOA system.

In the following we will create a snapshot in time after 200 samples for a broadband virtual point source placed at (0
2 0) m for 2.5D NFC-HOA.

conf = SFS_config;
conf.dimension = '2.5D';
conf.plot.useplot = true;
% sound_field_imp_nfchoa(X,Y,Z,xs,src,t,conf)
[p,x,y,z,x0] = sound_field_imp_nfchoa([-2 2],[-2 2],0,[0 2 0],'ps',200,conf);
%print_png('img/sound_field_imp_nfchoa_25d.png');

Fig. 4.1: Sound pressure of a broadband impulse point source synthesized by 2.5D NFC-HOA. The point source is
placed at (0,2,0) m and the time snapshot is shown 200 samples after the first secondary source was active.

The output can also be plotted in dB by setting conf.plot.usedb = true;. In this case the default color map
is changed and a color bar is plotted in the figure. For none dB plots no color bar is shown in the plots. In these cases
the color coding goes always from -1 to 1, with clipping of larger values.

conf.plot.usedb = true;
plot_sound_field(p,[-2 2],[-2 2],0,x0,conf);
%print_png('img/sound_field_imp_nfchoa_25d_dB.png');

19

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 4.2: Sound pressure in decibel of the same broadband impulse point source as in the figure above.

You could change the color map yourself doing the following before the plot command.

conf.plot.colormap = 'jet'; % Matlab rainbow color map

If you want to simulate more than one virtual source, it is a good idea to set the starting time of your simulation to
start with the activity of your virtual source and not with the secondary sources, which is the default behavior. You
can change this by setting conf.wfs.t0 = ’source’.

conf.plot.useplot = false;
conf.wfs.t0 = 'source';
t_40cm = round(0.4/conf.c*conf.fs); % in samples
[p_ps,~,~,~,x0_ps] = ...

sound_field_imp_wfs([-2 2],[-2 2],0,[1.9 0 0],'ps',20+t_40cm,conf);
[p_pw,~,~,~,x0_pw] = ...

sound_field_imp_wfs([-2 2],[-2 2],0,[1 -2 0],'pw',20-t_40cm,conf);
[p_fs,~,~,~,x0_fs] = ...

sound_field_imp_wfs([-2 2],[-2 2],0,[0 -1 0 0 1 0],'fs',20,conf);
plot_sound_field(p_ps+p_pw+p_fs,[-2 2],[-2 2],0,[x0_ps; x0_pw; x0_fs],conf)
hold;
scatter(0,0,'kx'); % origin of plane wave
scatter(1.9,0,'ko'); % point source
scatter(0,-1,'ko'); % focused source
hold off;
%print_png('sound_field_imp_multiple_sources_dB.png');

20 Chapter 4. Time Domain

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 4.3: Sound pressure in decibel of a boradband impulse plane wave, point source, and focused source synthesized
all by 2.5D WFS. The plane wave is traveling into the direction (1,-2,0) and shown 31 samples before it starting point
at (0,0,0). The point source is placed at (1.9,0,0) m and shown 71 samples after its start. The focused source is placed
at (0,-1,0) m and shown 20 samples after its start.

21

SFS Toolbox - Matlab Documentation, Release <unknown>

22 Chapter 4. Time Domain

CHAPTER 5

Custom Grids

As stated earlier you can provide the sound field simulation functions a custom grid instead of the [min max] ranges.
Again, you can provide it for one dimension, two dimensions, or all three dimensions.

conf = SFS_config;
conf.dimension = '3D';
conf.secondary_sources.number = 225;
conf.secondary_sources.geometry = 'sphere';
conf.resolution = 100;
conf.plot.normalisation = 'center';
X = randi([-2000 2000],125000,1)/1000;
Y = randi([-2000 2000],125000,1)/1000;
Z = randi([-2000 2000],125000,1)/1000;
sound_field_mono_wfs(X,Y,Z,[0 -1 0],'pw',800,conf);
%print_png('img/sound_field_wfs_3d_xyz_custom_grid.png');
conf.plot.usedb = true;
conf.dimension = '2.5D';
conf.secondary_sources.number = 64;
conf.secondary_sources.geometry = 'circle';
sound_field_imp_nfchoa(X,Y,0,[0 2 0],'ps',200,conf);
%print_png('img/sound_field_imp_nfchoa_25d_dB_custom_grid.png');

23

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 5.1: Sound pressure of a monochromatic point source synthesized by 3D WFS. The plane wave has a frequency
of 800 Hz and is travelling into the direction (0,-1,0). The sound pressure is calculated only at the explicitly provided
grid points.

Fig. 5.2: Sound pressure in decibel of a broadband impulse point source synthesized by 2.5D NFC-HOA. The point
source is placed at (0,2,0) m and a time snapshot after 200 samples of the first active secondary source is shown. The
sound pressure is calculated only at the explicitly provided grid points.

24 Chapter 5. Custom Grids

CHAPTER 6

Binaural Simulations

If you have a set of HRTF (Head-Related Transfer Function)s or BRIR (Binaural Room Impulse Response)s you
can simulate the ear signals reaching a listener sitting at a given point in the listening area for different spatial audio
systems.

In order to easily use different HRTF or BRIR sets the Toolbox uses the SOFA file format. In order to use it you
have to install the SOFA API for Matlab/Octave and run SOFAstart before you can use it inside the SFS Tool-
box. If you are looking for different HRTFs and BRIRs, a large set of different impulse responses is available:
http://www.sofaconventions.org/mediawiki/index.php/Files.

The files dealing with the binaural simulations are in the folder SFS_binaural_synthesis. Files dealing with
HRTFs and BRIRs are in the folder SFS_ir. If you want to extrapolate your HRTFs to plane waves you may also
want to have a look in the folder SFS_HRTF_extrapolation.

In the following we present some examples of binaural simulations. For their auralization an anechoic recording of a
cello is used, which can be downloaded from anechoic_cello.wav.

6.1 Binaural simulation of arbitrary loudspeaker arrays

If you use an HRTF data set, it has the advantage that it was recorded in anechoic conditions and the only parameter
that matters is the relative position of the loudspeaker to the head during the measurement. This advantage can be used
to create every possible loudspeaker array you can imagine, given that the relative locations of all loudspeakers are
available in the HRTF data set. The above picture shows an example of a HRTF measurement. You can download the
corresponding QU_KEMAR_anechoic_3m.sofa HRTF set, which we can directly use with the Toolbox.

The following example will load the HRTF data set and extracts a single impulse response for an angle of 30° from it.
If the desired angle of 30° is not available, a linear interpolation between the next two available angles will be applied.
Afterwards the impulse response will be convolved with the cello recording by the auralize_ir() function.

conf = SFS_config;
hrtf = SOFAload('QU_KEMAR_anechoic_3m.sofa');
ir = get_ir(hrtf,[0 0 0],[0 0],[rad(30) 0 3],'spherical',conf);
cello = wavread('anechoic_cello.wav');
sig = auralize_ir(ir,cello,1,conf);
sound(sig,conf.fs);

To simulate the same source as a virtual point source synthesized by WFS and a circular array with a diameter of 3 m,
you have to do the following.

conf = SFS_config;
conf.secondary_sources.size = 3;
conf.secondary_sources.number = 56;

25

http://sofaconventions.org
https://github.com/sofacoustics/API_MO
http://www.sofaconventions.org/mediawiki/index.php/Files
https://dev.qu.tu-berlin.de/projects/twoears-database/repository/revisions/master/raw/stimuli/anechoic/instruments/anechoic_cello.wav
https://github.com/sfstoolbox/data/raw/master/HRTFs/QU_KEMAR_anechoic_3m.sofa

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 6.1: Setup of the KEMAR (Knowles Electronics Manikin for Acoustic Research) and a loudspeaker during a
HRTF measurement.

conf.secondary_sources.geometry = 'circle';
conf.dimension = '2.5D';
hrtf = SOFAload('QU_KEMAR_anechoic_3m.sofa');
% ir = ir_wfs(X,phi,xs,src,hrtf,conf);
ir = ir_wfs([0 0 0],pi/2,[0 3 0],'ps',hrtf,conf);
cello = wavread('anechoic_cello.wav');
sig = auralize_ir(ir,cello,1,conf);

If you want to use binaural simulations in listening experiments, you should not only have the HRTF data set, but also
a corresponding headphone compensation filter, which was recorded with the same dummy head as the HRTFs and
the headphones you are going to use in your test. For the HRTFs we used in the last example and the AKG K601
headphones you can download QU_KEMAR_AKGK601_hcomp.wav. If you want to redo the last simulation with
headphone compensation, just add the following lines before calling ir_wfs().

conf.ir.usehcomp = true;
conf.ir.hcompfile = 'QU_KEMAR_AKGK601_hcomp.wav';
conf.N = 4096;

The last setting ensures that your impulse response will be long enough for convolution with the compensation filter.

6.2 Binaural simulation of a real setup

Besides simulating arbitrary loudspeaker configurations in an anechoic space, you can also do binaural simulations
of real loudspeaker setups. In the following example we use BRIRs from the 64-channel loudspeaker array of the
University Rostock as shown in the panorama photo above. The BRIRs and additional information on the recordings
are available for download, see doi:10.14279/depositonce-87.2. For such a measurement the SOFA (Spatially Oriented
Format for Acoustics) file format has the advantage to be able to include all loudspeakers and head orientations in just

26 Chapter 6. Binaural Simulations

https://raw.githubusercontent.com/sfstoolbox/data/master/headphone_compensation/QU_KEMAR_AKGK601_hcomp.wav
http://dx.doi.org/10.14279/depositonce-87.2

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 6.2: Boxed shaped loudspeaker array at the University Rostock.

one file.

conf = SFS_config;
brir = 'BRIR_AllAbsorbers_ArrayCentre_Emitters1to64.sofa';
conf.secondary_sources.geometry = 'custom';
conf.secondary_sources.x0 = brir;
conf.N = 44100;
ir = ir_wfs([0 0 0],0,[3 0 0],'ps',brir,conf);
cello = wavread('anechoic_cello.wav');
sig = auralize_ir(ir,cello,1,conf);

In this case, we don’t load the BRIRs into the memory with SOFAload() as the file is too large. Instead, we make
use of the ability that SOFA can request single impulse responses from the file by just passing the file name to the
ir_wfs() function. In addition, we have to set conf.N to a reasonable large value as this determines the length of
the impulse response ir_wfs() will return, which has to be larger as for the anechoic case as it should now include
the room reflections. Note, that the head orientation is chosen to be 0 instead of pi/2 as in the HRTF examples due
to a difference in the orientation of the coordinate system of the BRIR measurement.

6.3 Frequency response of your spatial audio system

Binaural simulations are also a nice way to investigate the frequency response of your reproduction system. The
following code will investigate the influence of the pre-equalization filter in WFS on the frequency response. For the
red line the pre-filter is used and its upper frequency is set to the expected aliasing frequency of the system (above
these frequency the spectrum becomes very noise as you can see in the figure).

conf = SFS_config;
conf.ir.usehcomp = false;
conf.wfs.usehpre = false;
hrtf = dummy_irs(conf);
[ir1,x0] = ir_wfs([0 0 0],pi/2,[0 2.5 0],'ps',hrtf,conf);
conf.wfs.usehpre = true;
conf.wfs.hprefhigh = aliasing_frequency(x0,conf);
ir2 = ir_wfs([0 0 0],pi/2,[0 2.5 0],'ps',hrtf,conf);
[a1,p,f] = easyfft(norm_signal(ir1(:,1)),conf);
a2 = easyfft(norm_signal(ir2(:,1)),conf);
figure;
figsize(540,404,'px');
semilogx(f,20*log10(a1),'-b',f,20*log10(a2),'-r');
axis([10 20000 -80 -40]);
set(gca,'XTick',[10 100 250 1000 5000 20000]);
legend('w/o pre-filter','w pre-filter');
xlabel('frequency / Hz');
ylabel('magnitude / dB');
%print_png('img/impulse_response_wfs_25d.png');

6.3. Frequency response of your spatial audio system 27

SFS Toolbox - Matlab Documentation, Release <unknown>

Fig. 6.3: Sound pressure in decibel of a point source synthesized by 2.5D WFS for different frequencies. The 2.5D
WFS is performed with and without the pre-equalization filter. The calculation is performed in the time domain.

The same can be done in the frequency domain, but in this case we are not able to set a maximum frequency of the
pre-equalization filter and the whole frequency range will be affected.

freq_response_wfs([0 0 0],[0 2.5 0],'ps',conf);
axis([10 20000 -40 0]);
%print_png('img/impulse_response_wfs_25d_mono.png');

Fig. 6.4: Sound pressure in decibel of a point source synthesized by 2.5D WFS for different frequencies. The 2.5D
WFS is performed only with the pre-equalization filter active at all frequencies. The calculation is performed in the
frequency domain.

28 Chapter 6. Binaural Simulations

SFS Toolbox - Matlab Documentation, Release <unknown>

6.4 Using the SoundScape Renderer with the SFS Toolbox

In addition to binaural synthesis, you may want to apply dynamic binaural synthesis, which means you track the posi-
tion of the head of the listener and switches the used impulse responses regarding the head position. The SoundScape
Renderer (SSR) is able to do this. The SFS Toolbox provides functions to generate the needed wav files containing the
impulse responses used by the SoundScape Renderer. All functions regarding the SSR (SoundScape Renderer) are
stored in folder SFS_ssr.

conf = SFS_config;
brs = ssr_brs_wfs(X,phi,xs,src,hrtf,conf);
wavwrite(brs,fs,16,'brs_set_for_SSR.wav');

6.4. Using the SoundScape Renderer with the SFS Toolbox 29

http://spatialaudio.net/ssr/
http://spatialaudio.net/ssr/

SFS Toolbox - Matlab Documentation, Release <unknown>

30 Chapter 6. Binaural Simulations

CHAPTER 7

Helper Functions

The Toolbox provides you also with a set of useful small functions. Here the highlights are angle con-
version with rad() and deg(), FFT (Fast Fourier Transform) calculation and plotting easyfft(), ro-
tation matrix rotation_matrix(), multi-channel fast convolution convolution(), nearest neighbour
search findnearestneighbour(), even or odd checking iseven() isodd(), spherical Bessel functions
sphbesselh() sphbesselj() sphbessely().

31

SFS Toolbox - Matlab Documentation, Release <unknown>

32 Chapter 7. Helper Functions

CHAPTER 8

Plotting

The Toolbox provides you with a function for plotting your simulated sound fields (plot_sound_field()) and
adding loudspeaker symbols to the figure (draw_loudspeakers()). If you have gnuplot installed, you can use
the functions gp_save_matrix() and gp_save_loudspeakers() to save your data in a way that it can be
used with gnuplot. An example use case can be found at this plot of a plane wave which includes the Matlab/Octave
code to generate the data and the gnuplot script for plotting it.

33

https://github.com/hagenw/phd-thesis/tree/master/02_theory_of_sound_field_synthesis/fig2_04

SFS Toolbox - Matlab Documentation, Release <unknown>

34 Chapter 8. Plotting

CHAPTER 9

Version History

2.2.1 (22. August 2016)

• fix delayoffset for FIR fractional delay filter

• add findconvexcone()

• simplify convolution()

• add linear interpolation working in the frequency domain

• fix pm option for delayline()

2.2.0 (7. July 2016)

• fix impulse response interpolation for three points

• add the ability to apply modal weighting window to NFC-HOA in time domain

• change license to MIT

• update delayline() config settings

• add Lagrange and Thiran filters to delayline()

• replace wavread and warwrite by audioread and savewav

• convolution() excepts now two matrices as input

• allow headphone compensation filter to be a one- or two-channel wav file

• add new online doc at http://matlab.sfstoolbox.org/

• fix greens_function_mono() for plane wave and 3D

• replace conf.ir.useoriglength by conf.ir.hrirpredelay

• update default WFS driving functions

• add links to equations in online theory at http://sfstoolbox.org

2.1.0 (10. March 2016)

• make conf struct mandatory

• add new start message

• fix handling of 0 in least squares fractional delays

• fix NFC-HOA order for even loudspeaker numbers to N/2-1

• add conf.wfs.hpreFIRorder as new config option (was hard coded to 128 before)

35

http://matlab.sfstoolbox.org/
http://sfstoolbox.org

SFS Toolbox - Matlab Documentation, Release <unknown>

• speed up secondary source selection for WFS

• rename chromajs colormap to yellowred

• fix tapering_window() for non-continuous secondary sources

• remove cubehelix colormap as it is part of Octave

• add conf.wfs.t0 option which is useful, if you have more than one virtual source

• virtual line sources are now available for monochromatic WFS and NFC-HOA

• allow arbritrary orders for time-domain NFC-HOA simulations

2.0.0 (26. October 2015)

• add support for SOFA

• add SOFA convention SimpleFreeFieldHRIR

• add SOFA convention MultiSpeakerBRIR

• calculate integration weights (x0(:,7)) of secondary sources based on their distances to their neighbours

• add rounded-box as new loudspeaker array geometry

• fix bugs in local sound field synthesis time domain implementation

• speedup local sound field synthesis processing by fewer calls to delayline()

• add heuristic to find a good local wave field synthesis pre-filter

• loudspeaker geometry can now be read from a SOFA file

• now custom grids can be used during sound field simulations

• add 3D plot routine

• change plot_sound_field(P,x,y,z) to plot_sound_field(P,X,Y,Z)

• normalization of sound field now only happens in plot_sound_field(); this comes with the new config
option conf.plot.normalisation

• remove interaural_level_difference() and interaural_time_difference()

• change default config setting conf.ir.usehcomp to false

• lots of small bug fixes

1.2.0 (2. June 2015)

• add PDF documentation “Theory of Sound Field Synthesis”

• fix remaining usegnuplot config entry

• change default dB color map to chromajs

• add missing hgls2 functionality (fractional delays)

• add cubehelix and chromajs color maps

• remove noise() function, use the one from the LTFAT Toolbox instead

1.1.0 (2. April 2015)

• fix amplitude bug in get_ir() and ir_generic()

• remove direct gnuplot plotting

• add support for local Wave Field Synthesis

36 Chapter 9. Version History

SFS Toolbox - Matlab Documentation, Release <unknown>

• the length of the dirac impulse response is now an option for dummy_irs()

• fix iseven(), isodd() for very large numbers

• correct the sign for Wave Field Synthesis driving functions

1.0.1 (4 August 2014)

• rms() works now also with row vectors in order to be compatible with the Auditory Modeling Toolbox

• fixed handling of number of secondary sources for a box shaped array

• fixed a bug in ir_auralize() regarding the contentfile configuration

• corrected NFC-HOA driving functions for off-center arrays

1.0.0 (27 March 2014)

• added references for all driving functions

• streamlined nested conf settings; e.g. now it is no longer neccessary to set conf.ir.hcompfile if
conf.usehcomp == false

• added WFS driving functions from Völk et al. and Verheijen et al.

• removed secondary_source_number() and xy_grid, because they are no longer needed

• enabled pre-equalization filter of WFS as default in SFS_config_example()

• fixed sound_field_mono_sdm_kx()

• Green’s function for line sources returns now real values

• correct y-direction of plane waves for 3D NFC-HOA

• updated the test functions in the validation folder

• several small fixes

1.0.0-beta2 (5 December 2013)

• rms() now works for arbitrary arrays

• speedup of delayline() and HRTF extrapolation

• delayline() now works with more than one channel

• fixed a critical bug in wfs_preequalization()

• fixed missing conf values in several functions

• fixed README

• changed location of sfs-data for automatic download, because github does not allow this

• several minor fixes

1.0.0-beta (26 August 2013)

• bandpass() can now handle arbritrary frequency limits

• sphbesselh_zeros() comes now with precomputed zeros for an order up to 1000

• renamed wave_field_* functions to sound_field_*

• the order for NFC-HOA can now be set manually via conf.nfchoa.order

• several performance improvements

• added missing driving functions for WFS and NFC-HOA

37

SFS Toolbox - Matlab Documentation, Release <unknown>

• added convolution() which is faster than conv and can handle multidimensional signals

• changed default plotting style of loudspeakers to conf.plot.realloudspeaker=false

• hann_window() now uses (2*n+1) instead of (2*n) to generate the window

• replaced the input parameter L by conf.secondary_sources.size

• the aliasing frequency is now calculated by the mean distance between the given secondary sources

• added nearest neighbour search and 3D interpolation to get_ir()

• moved the tapering window into x0(:,7), added new function secondary_source_tapering to achieve this

• added a seventh column to x0 which includes integrational weights

• added extra directory for SSR renderer functions

• added 3D HRTF extrapolation

• changed array configuration to use number of secondary sources instead of distance between them

• changed SFS_config to use substructs like conf.secondary_sources.*

• added the possibility to calculate the wave field for a arbritrary positioned plane in 3D

• added 3D WFS functions

• make the Toolbox work in 3D, which brakes backwards compability!

• now all monochromatic functions have a time_domain counterpart

• reordered the argouts for the wave field functions; now P is always the first argout

• automatically plotting of the wave fields if no argouts are wanted

• changed direction of focused source from the conf.xref vector directly into xs. For a focused source xs is
now [1x6]

0.2.5 (12 July 2013)

• fixed a bug causing the wrong loudspeaker position in the output of generic_wfs()

0.2.4 (4 June 2013)

• added a documentation to the github README

• reworked the plotting, now simple saving to png is possible

• added a narginchk function for older Matlab versions

• replaced conf.frame with t in the imp functions

• lots of small bugs were fixed

0.2.3 (9 April 2013)

• summed up line, point, ... sources to green_function for mono and imp

• introduced global wave_field functions for mono and imp

• fixed binaural simulations for NFC-HOA

• removed compatibility for octave versions <3.6

• fixed a critical bug for the HRTF farfield extrapolation, due to the new secondary source selection behavior

0.2.2 (27 November 2012)

• added functions to calculate the sound pressure for monochromatic WFS at a single point in analogy to the
point_source function

38 Chapter 9. Version History

SFS Toolbox - Matlab Documentation, Release <unknown>

• changed the behavior of secondary_source_selection to returning a new x0 vector

• added compatibility for octave 3.6

• first fix of secondary source selection for focused sources (now they point always in the direction of the
reference point)

0.2.1 (15 June 2012)

• added NFC-HOA 2.5D monochromatic

• added NFC-HOA 2.5D binaural simulations

• added SDM 2.5D monochromatic

• make NFC-HOA work under Octave

• fixed direction of plane waves and point sources for NFC-HOA time domain simulations

• changed syntax for wave_field_* and driving_* functions:

– xs,f,src => xs,src,f

– xs,L,src => xs,src,L

– xs,L,f,src => xs,src,f,L

0.2.0 (25 April 2012)

• first public release (under the GPLv3+ license)

39

	Sound Field Synthesis Toolbox for Matlab
	Installation
	Requirements
	Getting started
	Credits and feedback

	Secondary Sources
	Linear array
	Circular array
	Box shaped array
	Box shaped array with rounded edges
	Spherical array
	Arbitrary shaped arrays
	Plot loudspeaker symbols

	Frequency Domain
	Wave Field Synthesis
	Near-Field Compensated Higher Order Ambisonics
	Local Wave Field Synthesis
	Stereo

	Time Domain
	Custom Grids
	Binaural Simulations
	Binaural simulation of arbitrary loudspeaker arrays
	Binaural simulation of a real setup
	Frequency response of your spatial audio system
	Using the SoundScape Renderer with the SFS Toolbox

	Helper Functions
	Plotting
	Version History

